
J
H
E
P
0
2
(
2
0
0
6
)
0
7
1

Published by Institute of Physics Publishing for SISSA

Received: December 5, 2005

Revised: December 20, 2005

Accepted: February 20, 2006

Published: February 28, 2006

Generalized Konishi anomaly, Seiberg duality and

singular effective superpotentials

Philip C. Argyres and Mohammad Edalati

Physics Department, University of Cincinnati

Cincinnati OH 45221-0011, U.S.A.

E-mail: argyres@physics.uc.edu, edalati@physics.uc.edu

Abstract: Using the generalized Konishi anomaly (GKA) equations, we derive the effec-

tive superpotential of four-dimensional N = 1 supersymmetric SU(Nc) gauge theory with

Nf = Nc + 2 fundamental flavors. We find, however, that the GKA equations are only

integrable in the Seiberg dual description of the theory, but not in the direct description of

the theory. The failure of integrability in the direct, strongly coupled, description suggests

the existence of non-perturbative corrections to the GKA equations.

Keywords: Supersymmetric gauge theory, Supersymmetric Effective Theories,

Supersymmetry and Duality.

c© SISSA 2006 http://jhep.sissa.it/archive/papers/jhep022006071/jhep022006071.pdf

mailto:argyres@physics.uc.edu
mailto:edalati@physics.uc.edu
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
2
(
2
0
0
6
)
0
7
1

Contents

1. Introduction 1

2. Weff for Nf ≥ 4 SU(2) superQCD 4

3. Weff for Nf = Nc + 2 superQCD: non-integrability of GKA equations 8

3.1 Comparison to the SU(2) solution 11

4. Weff for Nf = Nc + 2 superQCD: Seiberg dual analysis 12

4.1 Derivation of Weff 14

4.2 Integrating out the glueball field 16

4.3 Comparing to the direct result when Nf = 4 19

1. Introduction

Holomorphicity of the superpotential and gauge couplings, global symmetries and the weak-

coupling limit enable one to obtain exact results in supersymmetric gauge theories (for

reviews see [1, 2]), making these theories more tractable than their non-supersymmetric

cousins. Since supersymmetric gauge theories exhibit a wealth of non-perturbative phe-

nomena such as dynamically generated superpotentials with associated confinement or

chiral symmetry breaking [3, 4], deformed classical moduli spaces [5], Seiberg duality [6],

etc.., and since some of these phenomena also occur in non-supersymmetric theories, su-

persymmetric gauge theories are usually considered as a way to qualitatively study non-

perturbative aspects of ordinary gauge theories. Therefore having a clear picture of the

behavior of supersymmetric gauge theories may shed light on a better understanding of

the dynamics of strongly-coupled gauge theories with no supersymmetry.

Despite much progress in the effective dynamics of four-dimensional N = 1 supersym-

metric QCD, the behavior of the effective superpotential for a number of flavors Nf large

compared to the number of colors Nc is not well-understood. This is because, firstly, when

the number of flavors increases there are typically additional light degrees of freedom at

the origin of the moduli space that one needs to include in the effective description. Sec-

ondly, the effective superpotentials become singular when expressed in terms of the local

gauge-invariant light degrees of freedom away from the origin; more precisely, the potentials

derived from such effective superpotentials have cusp-like singularities at their minima [7].

Thirdly, the dependence of these effective superpotentials on the strong coupling scale of

the theory Λ is such that they apparently diverge in the the weak coupling limit Λ → 0.

Because of these problems the physical meaning of such superpotentials is thought to be

problematic.
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We have argued elsewhere [7] that effective superpotentials for the light gauge-invariant

degrees of freedom away from the origin must nevertheless exist. Furthermore, direct

computation in the case of SU(2) superQCD shows [7] that these superpotentials, although

singular, are nevertheless physically sensible, and reproduce both the low energy physics

as well as certain higher-derivative terms in an intrinsic description on the moduli space

away from the origin [8].

In this paper we extend our arguments to SU(Nc) superQCD by computing its singu-

lar effective superpotential. Unlike the SU(2) case, the SU(Nc) case has a smaller global

symmetry group, making it harder to find the superpotential. We deal with this by solving

a system of differential equations for the effective superpotential [9] derived from the gen-

eralized Konishi anomaly (GKA) equations [10]. The complexity of this system increases

with the number of massless fundamental flavors Nf , but we are able to solve them in the

first interesting case, Nf = Nc + 2.

However, there are some subtleties involved in applying the GKA equations in this

case: the GKA equations are not integrable when applied to the (strongly coupled) direct

description of the theory, but are integrable when applied to the (weakly coupled) Seiberg

dual description of the theory. In the rest of this section, we will explain these subtleties in

more detail and discuss the issues that they raise concerning the possible non-perturbative

exactness of the GKA equations. We leave the technical details of the calculations to

subsequent sections.

The indirect argument for the existence of the effective superpotential referred to above

goes as follows: Wilsonian effective superpotentials are assured to exist only if there is a

region in the configuration space of the chosen chiral fields where all of them are light

together and comprise all the light degrees of freedom. If this condition is satisfied, then

the resulting effective superpotential can be extended over the whole configuration space by

analytic continuation using the holomorphicity of the superpotential. For a large enough

number of flavors the theory becomes IR free and the only region where all the components

of the chosen chiral vevs become light at the same time is at the origin. We know what

the light degrees of freedom are near that point since we have a weakly coupled lagrangian

description there. The physics can be made arbitrarily weakly coupled simply by taking

all scalar field vevs 〈φ〉 << Λ where Λ is the strong coupling scale (or UV cutoff) of

the IR free theory. In this limit the physics is just the classical Higgs mechanism, and

all particles get masses of order 〈φ〉 or less. The Wilsonian effective description results

from integrating out modes with energies greater than a cutoff, which we take to be some

multiple of 〈φ〉. The effective action will then include all local gauge-invariant operators

made from the fundamental fields in the lagrangian and which can create particle states

with masses below the cutoff. For the purpose of constructing the effective superpotential,

the relevant local gauge-invariant operators are those in the chiral ring. It is then just a

matter of constructing in the classical gauge theory a set of operators which generate the

chiral ring. We will refer to this set as the classical chiral operators of the theory.

In a weakly coupled SU(Nc) superQCD a basis of local gauge-invariant operators in

the chiral ring (the classical chiral operators) is comprised of just the glueball, meson,

and baryon operators [10, 11]. An effective superpotential which is a function of these
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operators must then exist. For Nf > Nc +1, the quantum moduli space is also the same as

the classical one [5], but effective superpotentials (singular or not) for these cases have not

been found before. Also, this theory has an equivalent description in the IR in terms of a

“Seiberg dual” SU(Nf −Nc) supersymmetric QCD with Nf (dual) fundamental quarks and

anti-quarks and a set of singlet scalars coupled to the dual mesons through a superpotential

[6].

Note that the above argument does not directly show the existence of such effective

superpotentials in the asymptotically free case. In particular, for theories in the “conformal

window” where neither the direct nor Seiberg dual description is IR free (3
2Nc < Nf < 3Nc

for SU(Nc) gauge group), we have no useful description of the light degrees of freedom

at the origin of moduli space. Nevertheless, given an effective superpotential for an IR

free theory, one can then successively add mass terms to the effective superpotential and

integrate out massive flavors to derive consistent effective superpotentials in the conformal

window. This then assures us that effective superpotentials exist for all numbers of light

flavors in supersymmetric QCD.

Our method for deriving the effective superpotential for the Nf > Nc+1 theory will be

to integrate the generalized Konishi anomaly (GKA) equations [10] following the approach

of [12, 9]. The resulting equations become very complicated [9] for large numbers of flavors,

so we are not able to solve them directly in the IR free case Nf ≥ 3Nc, and then integrate

out flavors as in the above argument.

For Nf = Nc + 2, however, the GKA equations simplify to a first order matrix differ-

ential equation simple enough that we can analyze it. We show that the GKA equations

for the effective superpotential are not integrable in this case for Nc > 2. This is not in

direct conflict with the general arguments advanced above: for Nf = Nc + 2 and Nc > 2,

the theory at the origin is strongly coupled in terms of its microscopic fields, so an effective

description in terms of the chiral ring operators made from these fields simply need not

exist.

However, this failure of integrability presents a sharper puzzle in light of the follow-

ing: we can nevertheless calculate an effective superpotential by using the fact that for

Nf = Nc + 2 with Nc ≥ 4 the Seiberg dual description is an IR free SU(2) gauge theory.

By applying the GKA equations to the Seiberg dual description we derive the effective

superpotential of the theory in terms of the dual chiral fields. It is given in equation (4.18)

below, where we have used the map [6] between direct and dual chiral operators to interpret

this as an effective superpotential in terms of the classical chiral operators of the direct

theory — the mesons M i
j , baryons Bij and B̃ij, and the glueball S.

We have thus found the effective superpotential in terms of the classical chiral opera-

tors. This raises the question of why were the GKA equations not integrable in the direct

theory in the first place? We interpret this failure of integrability as indicating that the

GKA equations get non-perturbative corrections. It remains to characterize more precisely

the nature of the non-perturbative corrections to the GKA equations. One possibility is

that there exists a non-perturbatively modified set of GKA equations in terms of the classi-

cal chiral operators ( i.e., glueball, mesons, and baryons in our case). Another possibility is

that there are additional operators in the chiral ring which are independent of the classical
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chiral operators; when included, they could render the GKA equations integrable, in much

the same way that the extra singlet field in the Seiberg dual description does. It has not

been ruled out that such additional fields could be seen in the semi-classical description

as higher derivative chiral operators.1 (Note that the non-trivial higher-derivative chiral

operators constructed in [8] are not candidates, since they are Q-exact when extended off

the moduli space to the configuration space of chiral vevs.) Finally, both possibilities — a

non-perturbative deformation of the GKA equations and the inclusion of additional chiral

fields — could occur together.

Once the issue of non-perturbative corrections to the GKA equations is raised, it

applies equally well to the GKA equations derived in the Seiberg dual description. It is an

open question whether the effective superpotential derived below in the dual description is

correct or not for Nf ≥ 6. For even though, when Nf ≥ 6, the dual description is weakly

coupled at the origin of moduli space, it becomes strongly coupled an arbitrarily small

distance away from the origin since the superpotential term in the dual theory destabilizes

the free fixed point at the origin [6].

The remainder of the paper carries out the computations described qualitatively above,

and is organized as follows. To illustrate the method in a simple case first, and for later

comparison to the Seiberg dual description of the SU(Nc) case, in section 2 we consider the

case of SU(2) gauge group with Nf ≥ 4 flavors. We show how the GKA equations written

in terms of SU(2) mesons and baryons gives an effective superpotential matching that found

in [7] where we worked instead with the single antisymmetric meson field appropriate to an

Sp(1) description of the theory ( i.e., one which makes the enlarged global symmetry group

of the SU(2) compared to the general SU(Nc) theory manifest). In section 3 we apply the

GKA equations to SU(Nc) superQCD with Nf = Nc + 2 and Nc ≥ 4. We show that the

resulting equations for the effective superpotential are not integrable for Nf ≥ 6, but that

they are integrable and match the SU(2) result of the previous section for Nf = 4.

In section 4 we apply the GKA equations to the Seiberg dual of the theory in section 3,

and solve for the effective superpotential. The form of this superpotential is complicated:

integrating out the heavy glueball gives an effective superpotential of the form
√

det Mf(X)

where X = MB̃MT B/detM , but a closed-form expression for f(X) is not found. Instead,

we show that f obeys a nonlinear first order matrix differential equation (4.34). A power

series expansion of the solution to order X4 is computed in (4.29). We then compare this

result to the SU(2) effective superpotential of section 2 when Nf = 4, and show that they

agree at least to order X4.

2. Weff for Nf ≥ 4 SU(2) superQCD

We show how to calculate the effective superpotential of SU(2) superQCD with Nf ≥ 4

using the generalized Konishi anomaly equations, following [12, 9].

SU(2) superQCD has Nf massless quark and anti-quark chiral multiplets, Qi
a and Q̃a

i ,

transforming in the 2 and 2 of the gauge group, respectively. Here a = 1, 2 is the color

index and i = 1, . . . , Nf the flavor index. The apparent global symmetry of the theory is

1We thank S. Hellerman for discussions on this point.
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SU(Nf )× SU(Nf )×U(1)B ×U(1)R. Since 2 and 2 are equivalent representations, though,

SU(2) superQCD actually has the larger symmetry group SU(2Nf )×U(1)R, which is large

enough to determine the effective superpotential uniquely [7]. Here, since we are looking to

the generalization to SU(Nc) which only has the smaller symmetry group, we will analyze

the SU(2) case in terms of the Q’s and Q̃’s keeping only the SU(Nf )× SU(Nf )×U(1)B ×
U(1)R symmetry manifest.

The classical moduli space is parameterized by the vevs of the meson M and the baryon

B, B̃ chiral superfields defined by

M i
j := Qi

aQ̃
a
j , Bij := εabQi

aQ
j
b, B̃ij := εabQ̃

a
i Q̃

b
j , S := tr(W αWα)/(32π2),

(2.1)

where we have also defined the glueball chiral superfield S. These fields can be assigned the

charges R(S) = 2 and R(M) = R(B) = R(B̃) = 2(Nf − 2)/Nf under the non-anomalous

U(1)R symmetry. The meson and baryon vevs cannot take arbitrary values but are subject

to constraints following from (2.1),

B[ijM
k]
` = M i

[jB̃k`] = B[ijBk]` = B̃i[jB̃k`] = M
[i
kM

j]
` − BijB̃k` = 0, (2.2)

where the square brackets denote antisymmetrization. These constraints imply that M , B,

and B̃ all have rank less than or equal to 2 and, up to flavor rotations, take the form

M =




m1

m2

0


 , B =




b

−b

0


 , B̃ =




b̃

−b̃

0


 , (2.3)

with m1m2 = b̃b and 0 the (Nf − 2)× (Nf − 2) matrix of zeros. For Nf ≥ 3, the quantum

moduli space is also the same as the classical one [5].

For SU(2) superQCD with fundamental flavors M , B, B̃, and S are thought to generate

all non-trivial local gauge-invariant operators in the chiral ring of the classical theory [10,

11]. When Nf = 4 or 5 the theory is strongly coupled, and has new massless degrees of

freedom at the origin of moduli space, so the chiral ring might be deformed or enlarged from

the classical answer. But for Nf ≥ 6, where the theory is IR free, the classical description

is as accurate as we like (in the vicinity of the origin of the moduli space). So we will make

the assumption that we can write our effective superpotential in terms of just S, M , B,

and B̃.

However, for Nf ≥ 4, the global symmetries allow infinitely many terms in the effective

superpotential, making it hard to guess its correct form. So, instead, we use the generalized

Konishi anomaly (GKA) equations to derive the effective superpotential. If F i
r(Φ,Wα) are

holomorphic functions transforming in the same representation of the gauge group as a

chiral superfield Φi
r (i is a flavor index and r an index for the gauge representation), then

the GKA equation [10] is

〈
∂Wtree

∂Φj
r

F i
r

〉
=

1

32π2

〈
(W αWα)st

∂F i
s

∂Φj
t

〉
, (2.4)
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which can be interpreted as the anomalous Ward identity coming from the field trans-

formation δΦi
r = F i

r . Here Wtree is the classical superpotential. The GKA equation is

perturbatively one-loop exact [10]. It has also been shown [13] that it does not get non-

perturbative corrections for a U(N) gauge theory with matter in the adjoint representation

as well as for Sp(N) and SO(N) gauge theories with matter in symmetric or antisymmetric

representations. For the theories we are discussing here, its non-perturbative status is not

known; however, as we show below, there is strong evidence, at least for SU(2), that the

GKA equations are actually non-perturbatively exact.

Consider now SU(2) superQCD with the classical superpotential

Wtree = mi
j(M̂

j
i − M j

i) + bij(B̂ij − Bij) + b̃ij(ˆ̃Bij − B̃ij). (2.5)

Here mi
j, bij and b̃ij are Lagrange multipliers constraining the operators M̂ j

i, B̂ij and ˆ̃Bij

to have M j
i, Bij and B̃ij as their vacuum expectation values, respectively. (Whenever we

need to distinguish an operator from its vev, we put a hat on the operator.) We are looking

for the effective superpotential Weff as a function of the vevs S, M , B, and B̃. It follows

from (2.5) and the nature of the Legendre transform [14, 15, 1] that

mi
j = −∂Weff

∂M j
i

, bij = −1

2

∂Weff

∂Bij
, b̃ij = −1

2

∂Weff

∂B̃ij

, (2.6)

where the factors of 2 come from the antisymmetry of the baryons.

We now use the GKA equations to determine the dependence of the Lagrange multi-

pliers on M , B, B̃, and S. First set F i
r = Φi

r = Qi
a in (2.4) yielding

Mm = S + 2Bb, (2.7)

where we are using a matrix notation on the flavor indices (so that, e.g., the last equation

stands for M i
km

k
j = Sδi

j + 2Bikbkj). A similar equation,

mM = S + 2b̃B̃, (2.8)

follows from taking F i
r = Φi

r = Q̃a
i . Two more independent equations follow from taking

F i
r = εabQ̃

b
i and Φi

r = Qi
a, and from taking F i

r = εabQi
b and Φi

r = Q̃a
i , giving

B̃m = −2MT b, mB = −2b̃MT . (2.9)

We will carry out subsequent calculations at a generic point on the configuration space

of S, M , B and B̃ where they are all invertible matrices. Note, however, that when Nf

is odd, B and B̃, being odd rank antisymmetric matrices, are never invertible. We get

around this problem by restricting ourselves to an even number of flavors only. Once we

have found the superpotential for even Nf ’s, we can add a mass term for one flavor and

integrate it out to get the effective superpotential for the odd Nf − 1 flavors.

Therefore, multiplying (2.7–2.9) by appropriate inverses and substituting for the La-

grange multipliers m, b, and b̃ using (2.6) gives a set of partial differential equations for

– 6 –
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Weff

∂Weff

∂Bij
= S

[
(B̃M−1B + MT )−1B̃M−1

]
ij

,

∂Weff

∂B̃ij

= S
[
M−1B(B̃M−1B + MT )−1

]ij
,

∂Weff

∂M j
i

= S
[
M−1B(B̃M−1B + MT )−1B̃M−1 − M−1

]i

j
. (2.10)

Integrate the first equation in (2.10) to find

Weff = −S

2
ln det

(
I + M−T B̃M−1B

)
+ G(M, B̃, S), (2.11)

where M−T = (MT )−1, I is the Nf × Nf identity matrix, and G is an undetermined

integration function. Comparing the second equation in (2.10) with the derivative of (2.11)

with respect to B̃ gives ∂G/∂B̃ = 0. Also, comparing the derivative of (2.11) with respect

to M to the third equation in (2.10) gives ∂G/∂M = −SM−1, so that

G = −S ln det(M/Λ2) + H(S), (2.12)

for some undetermined function H(S). The Λ-dependence was determined by dimensional

analysis, where Λ is the strong-coupling scale of the SU(2) superQCD.

Equivalently, the global flavor symmetry implies that Weff = Weff(X,det M,S) where

X := M−T B̃M−1B. Plugging this functional form into (2.6–2.9) gives simple matrix dif-

ferential equations leading to (2.11–2.12).

H(S) is determined up to a constant by the U(1)R symmetry. Since R(Weff) = 2, H

must be linear in S, plus a logarithmic piece to cancel the U(1)R transformation of the

−S ln det M term, giving

H(S) = (2 − Nf )S[α − ln(S/Λ3)] (2.13)

for some undetermined constant α. We can determine α by matching to the Veneziano-

Yankielowicz superpotential [16], WVY(S) = 2S[1−ln(S/Λ3
YM)], for pure SU(2) superYang-

Mills. It is a short exercise to integrate out the mesons and baryons in (2.11) and match

strong coupling scales to find α = 1. We therefore find that the effective superpotential is

Weff = −S

2
ln

[
(det M)2 det(I + M−T B̃M−1B)

]
+ (2 − Nf )S(1 − ln S) + (6 − Nf )S ln Λ.

(2.14)

Since S is massive we can integrate it out by solving its equation of motion, ∂Weff/∂S = 0

to find

Weff(M,B, B̃) = (2 − Nf )

[
ΛNf−6 det M

√
det(I + M−T B̃M−1B)

]1/(Nf−2)

. (2.15)

This superpotential reproduces all known low energy aspects of SU(2) superQCD. The

easiest way to see this is to convert it to a description which makes the full global flavor
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symmetry manifest. As we mentioned earlier, SU(2) superQCD with Nf fundamental Qi
a

and Nf anti-fundamental Q̃a
i can be equivalently described in terms of 2Nf doublets QI

a,

I = 1, · · · , 2Nf with Qi
a = Qi

a and QNf +i
a = εabQ̃

b
i . Hence M , B and B̃ are combined into

an antisymmetric 2Nf × 2Nf matrix V IJ = εabQI
aQJ

b ,

V =

( B M

−MT B̃

)
. (2.16)

After a bit of algebra2 it is seen that our singular effective superpotential (2.15) can be

written in terms of this new variable as

Weff = (2 − Nf )
(
ΛNf−6

√
det V

)1/(Nf−2)
, (2.17)

making the SU(2Nf ) global symmetry manifest. Indeed, (2.17) coincides with the singular

effective superpotential found in [7], and so it satisfies all the checks discussed there: it gives

rise to the correct moduli space, is consistent under integrating out flavors, and reproduces

all the higher-derivative F-terms found in [8].

The success of this calculation can be taken as evidence that the GKA equations are

non-perturbatively exact for SU(2) superQCD.

3. Weff for Nf = Nc + 2 superQCD: non-integrability of GKA equations

SU(Nc) superQCD has Nf massless quark chiral fields Qi
a and Nf massless anti-quark

chiral fields Q̃a
i transforming in the fundamental and anti-fundamental representations,

respectively. Here i = 1, . . . , Nf is the flavor index and a = 1, . . . , Nc is the color index.

When Nf = Nc +2 the classical moduli space is parameterized by the gauge-invariant vevs

of the glueball, meson, and baryons defined by

Ŝ :=
1

32π2
tr(W αWα),

M̂ i
j := Qi

aQ̃
a
j ,

B̂ij :=
1

Nc!
εijk1···kNc

εa1···aNc Qk1

a1
· · ·QkNc

aNc
,

ˆ̃B
ij

:=
1

Nc!
εijk1···kNc εa1···aNc

Q̃a1

k1
· · · Q̃aNc

kNc
. (3.1)

The global symmetry of the theory is SU(Nf ) × SU(Nf ) × U(1)B × U(1)R. The U(1)R
charges are R(S) = 2, R(M) = 4/Nf , and R(B) = R(B̃) = 2Nc/Nf . The classical moduli

space is described by the constraints that M , B, and B̃ satisfy by virtue of their definitions,

BikM
k
j = M i

kB̃
kj = B[ijBk]` = B̃[ijB̃k]` = B̃ijBk` − M−1[i

kM−1j]
` det M = 0. (3.2)

Square brackets denote antisymmetrization; antisymmetrization on n indices consists of n!

terms ( i.e., with out a factor of 1/n!).

2Write V =
`
B 0

0 B̃

´`
1 x

y 1

´
with x := B

−1M , y := −B̃
−1MT . Use the identity det

`
1 x

y 1

´
= det(1 − xy), so

det V = detB det B̃ det(1 − xy) = (detM)2 det(−y−1x−1 + 1), which gives (2.15).
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They imply that by appropriate flavor rotations M , B, and B̃ can be put in the form

M =




m

 , B =


 b

−b


 , B̃ =


 b̃

−b̃


 , (3.3)

where m is an Nc × Nc matrix and b, b̃ are numbers satisfying b̃b = det(m). The classical

and the quantum moduli spaces are the same [5], but at the origin there are extra light

degrees of freedom. At points away from the origin, the only light degrees of freedom are

components of M , B, and B̃. At the origin, SU(Nc) supersymmetric QCD with Nf = Nc+2

is an interacting superconformal field theory for Nc = 2 and 3. For Nc ≥ 4 it becomes

strongly coupled, but has an IR free dual description in the IR [6].

In this section we will try to construct an effective superpotential in terms of these

fields which correctly describes the moduli space of vacua for points away from the origin.

As in the last section, we will use the GKA equations to systematically derive Weff . In

fact, the GKA equations were used in [9] to construct a set of coupled partial differential

equations for the effective superpotentials of SU(Nc) supersymmetric QCD. They have

been integrated [9] for Nf = Nc and Nf = Nc + 1 where the results are in agreement with

those in [5]. Unfortunately, the GKA equations are quite complicated for Nf ≥ Nc + 2

flavors. We will show below how to simplify the GKA equations when Nf = Nc + 2.

We briefly recap the derivation of the equations for Weff from the GKA equations [9].

The strategy is the same as in the SU(2) case discussed in the last section: start with the

tree level superpotential

Wtree = mi
j(M̂

j
i − M j

i ) + bij(B̂ij − Bij) + b̃ij(
ˆ̃Bij − B̃ij) (3.4)

where

mi
j = −∂Weff

∂M j
i

, bij = −1

2

∂Weff

∂Bij
, b̃ij = −1

2

∂Weff

∂B̃ij
, (3.5)

are Lagrange multipliers enforcing that M j
i , Bij and B̃ij be the vevs of the meson, baryon,

and anti-baryon operators, respectively. There is no need to introduce a Lagrange multiplier

for S because we are considering points away from the origin and S is massive for these

points. We get two relations among the Lagrange multipliers by taking Fr to be the quark

or antiquark field in the GKA equation (2.4), and two more by taking it to be proportional

to εijk`2···`Nc εaa2···aNc
Q̃a2

`2
· · · Q̃aNc

`Nc
, and similarly with the Q’s. The resulting GKA equations

are

M i
km

k
j = (S + bk`B`k)δ

i
j − 2bikBkj,

mi
kM

k
j = (S + b̃k`B̃

`k)δi
j − 2b̃ikB̃kj,

m
[j
i B̃k`] = 2bhgM−1[j

g M−1k
hM−1`]

i det M,

mi
[jBk`] = 2b̃hgM

−1g
[jM

−1h
kM−1i

`] det M. (3.6)

Note that the right sides of the last two equations, though they are written using M−1,

are actually polynomial in M .
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Now, the global flavor symmetry implies3 that

Weff = S f(X,S−2 det M), where X :=
MT BMB̃

detM
, (3.7)

and we are using matrix notation for the meson and baryon fields. The first two equations

in (3.6) then imply

Weff = S W (X) − S ln detM + 2S(ln S − 1), (3.8)

where W is to be determined.

The GKA equations (3.6) imply a matrix differential equation for W (X) as follows.

Contract the ijk` indices in the last equation in (3.6) with three M ’s, giving 2(2 −
Nf )̃b detM = tr(mM)MT BM +MT mTMT BM −MTBMmM . Substitute for Mm using

the first equation to get

2 b̃ detM = −
[
S +

Nc − 2

Nc
tr(bB)

]
MT BM − 4

Nc
MT BbBM. (3.9)

Derivatives of (3.8) with respect to B and B̃ together with (3.5) imply

2 b detM = S (MB̃WXMT + MW T
XB̃MT ),

2 b̃ detM = S (WXMT BM + MT BMW T
X), (3.10)

where WX := ∂W/∂X. Work at a generic point in parameter space where M , B, B̃ and

X are all invertible matrices. This is only possible if Nf , and therefore Nc, is taken to be

even, as in the discussion in the previous section.

Substitute (3.10) in (3.9) and multiply on both left and right by B̃ to obtain

B̃G(X) = −GT (X)B̃, (3.11)

where

G(X) := WXX +
1

2

[
1 +

Nc − 2

Nc
tr(WXX)

]
X +

2

Nc
XWXX, (3.12)

3This symmetry argument is not entirely straightforward. The U(1)B baryon number symmetry implies

that for each B there must be an accompanying B̃ in each term. Since Weff is an SU(Nf )×SU(Nf ) singlet,

all the flavor indices must be contracted in each term. Contractions with the totally antisymmetric epsilon

tensors can always be reduced to products of detM and Pf B · Pf B̃. The only other way to contract

indices of B and B̃ is with an M as BMB̃ (or its transpose), and since these in turn must be contracted,

another factor of M must be included. There are four ways of doing this—MT BMB̃ and its three cyclic

permutations—but upon making a flavor singlet expression a trace must be taken, so the cyclic order

does not matter. Finally, the product of Pfaffians of baryons is not independent of X and detM , since

Pf B · Pf B̃ =
q

det(MT BMB̃)/detM .

Alternatively, one can derive this directly from the GKA equations. Use them to deduce (3.9) and a

similar relation for b, multiply these by B̃ and B, respectively, then substitute the second into the first.

One finds that ebB̃ depends on B and B̃ only through X. Since eb ∼ ∂Weff/∂B̃, it follows that the dependence

of Weff on B and B̃ is solely through X.

Note that this symmetry argument is no longer effective when Nf > Nc +2. For then B and B̃ have more

than two indices, and the analog of X is no longer a matrix, but has Nf − Nc − 1 upper and Nf − Nc − 1

lower (antisymmetrized) indices. These objects can be contracted in many inequivalent ways to make flavor

singlets. This is the source of the difficulty in integrating the GKA equations for Nf > Nc + 2.
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and we have used that B̃X is antisymmetric. On the other hand, from the definition of

X (3.7) it follows that B̃X = XT B̃, which implies

B̃ G(X) = GT (X) B̃ (3.13)

since G is a function of X alone. (3.13) and (3.11) imply G(X) = 0, which, after being

multiplied from the right by X−1, reads

WX +
1

2

(
1 +

Nc − 2

Nc
tr(WXX)

)
I +

2

Nc
XWX = 0, (3.14)

where I is the Nf ×Nf identity matrix. This is the matrix differential equation for W (X).

The trace of (3.14), tr(WXX) = −[2 tr(WX) + Nc + 2]/Nc, allows us to eliminate

tr(WXX) from (3.14), giving NcWX = (Nc +2X)−1[(Nc−2) tr(WX)−2]. The trace of this

equation allows us to eliminate tr(WX) in turn, giving the following differential equation

for W (X):

WX =
2(Nc + 2X)−1

(Nc − 2) tr((Nc + 2X)−1) − Nc
. (3.15)

When Nc 6= 2, we define the matrix Y := (Nc−2)(Nc +2X)−1, and substitute it into (3.15)

to obtain
∂W

∂Y j
k

Y i
k =

1

Nc − tr(Y )
δi
j, (3.16)

where we have explicitly written the indices to avoid any confusion. This differential

equation is not integrable, as it is easy to check that ∂2W/∂Y k
l ∂Y i

j 6= ∂2W/∂Y i
j ∂Y k

l . This

shows that the GKA equations for Weff are not integrable for even values of Nc > 2.

3.1 Comparison to the SU(2) solution

For Nc = 2 we are integrating the same GKA equations as we did in section 2, though

in terms of the baryons and anti-baryons B and B̃ instead of their Hodge duals B and B̃.

Thus the GKA equations must be integrable in this case, and, of course, give the same

answer we found in section 2, namely, equation (2.15) with Nf = 4. However, there is

a subtlety in comparing these two computations, which we will now explain. It will play

an important part in our discussion of the results of integrating the Seiberg dual GKA

equations in the next section.

For Nc = 2, (3.14) is indeed integrable, and integrates to give W (X) = −1
2 tr ln(1+X).

Integrating out S from (3.8) then gives

ΛWeff,SU(2) = −2
√

det M det(1 + X)1/4, (3.17)

where Λ is the strong coupling scale of the gauge theory. On the other hand, the SU(2)

effective superpotential for Nf = 4 found in section 2 is

ΛWeff,SU(2) = −2
√

detM det(1 + M−T B̃M−1B)1/4. (3.18)

Since the SU(2) baryon fields B and B̃ as defined in (2.1) are Hodge-dual to the SU(Nc)

baryons B, B̃ defined in (3.1), and since rank(M) = Nf = 4, it follows that

M−T B̃M−1B =
1

2
tr(X) − X, (3.19)
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so that the effective superpotential reads

ΛWeff,SU(2) = −2
√

det M det(1 + 1
2 tr(X) − X)1/4. (3.20)

Apparently the two answers, (3.17) and (3.20), do not agree for general X.

The resolution of this paradox is that X is not a general 4 × 4 complex matrix, but

satisfies some constraints by virtue of its definition (3.7). In particular, X can be thought

of as the product of two antisymmetric matrices (MT BM and B̃). Such a matrix, though

not necessarily either symmetric or antisymmetric, has only half the degrees of freedom

that a general matrix, Y , of the same rank would have.

To see this, recall that an appropriate similarity transformation G−1Y G with G ∈
GL(2n, C) will diagonalize Y . Thus the 2n eigenvalues of the general rank 2n matrix

Y are all its GL(2n, C)-invariants. More properly, a basis of 2n independent symmetric

polynomials of these eigenvalues generates all invariants. This basis can conveniently be

taken to be tr(Y p) for p = 1, . . . , 2n. If, on the other hand, X = AB is the product of

two antisymmetric matrices A and B, then a GL(2n, C) transformation acts as G−1XG =

G−1ABG = G−1AG−T GT BG. We can always choose a G = G0 so that GT
0 BG0 = J

where J := In ⊗ iσ2 is the “unit” skew-diagonal matrix. This condition does not fix G,

since if H ∈ Sp(2n, C) ( i.e., H ∈ GL(2n, C) satisfies HT JH = J), then G = G0H will

also give GT BG = J . For such G we have G−1XG = H−1A′H−T J where A′ is the

antisymmetric matrix A′ = G−1
0 AG−T

0 . Now, a Gram-Schmidt othogonalization argument

but with respect to the skew product defined by J shows that H can always be chosen to

bring H−1A′H−T to skew diagonal form H−1A′H−T = diag{a1, . . . , an} ⊗ iσ2. Thus X

has only n independent (double) eigenvalues, and a basis of generators of the GL(2n, C)-

invariants of X can be taken to be tr(Xp) for p = 1, . . . , n. This is half the number of

independent invariants of the general rank 2n matrix Y , and implies, in particular, that

tr(Xp) for p > n satisfy additional identities allowing them to be expressed in terms of

products of traces with p ≤ n.

For example, for Nf = 4 (n = 2) the new independent cubic and quartic identities are

easily found to be

0 = 8 tr X3 − 6 tr X2 tr X + (tr X)3,

0 = 8 tr X4 − 4 tr X3 tr X − 2(tr X2)2 + tr X2(tr X)2. (3.21)

When Nf = 4, the identities (3.21) are easily checked to imply that tr(Xp) = tr(X ′p) for

p = 1, . . . , 4, where X ′ := 1
2 tr(X) − X. Thus all invariants made from X ′ are the same

as those for X, and in particular, the two forms of the effective superpotential (3.17) and

(3.20) are equivalent.

4. Weff for Nf = Nc + 2 superQCD: Seiberg dual analysis

The IR-equivalent Seiberg dual description [6] of SU(Nc) superQCD with Nf = Nc + 2

is SU(2) superQCD with Nf (dual) quarks qa
i in the fundamental and Nf (dual) anti-

quarks q̃i
a in the anti-fundamental, and a set of gauge singlets M̂i

j coupled through the
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superpotential

W = q̃i
aq

a
j M̂j

i , (4.1)

where i = 1, . . . , Nf and a = 1, 2 are flavor and color indices, respectively. This superpo-

tential breaks the global symmetry of the dual theory down to SU(Nf )×SU(Nf )×U(1)B×
U(1)R. The dual meson, baryons, and glueball are defined to be

N̂ i
j := q̃i

aq
a
j , B̂ij := εabq

a
i qb

j ,
ˆ̃Bij := εabq̃i

aq̃
j
b , S := tr(wαwα)/(32π2). (4.2)

This dual theory is IR free when Nf ≥ 6 (Nc ≥ 4), and there are free quarks, anti-

quarks and gluons at the origin of the moduli space. The U(1)R charges are R(S) = 2,

R(M) = 4/Nf , and R(N ) = R(B) = R(B̃) = 2Nc/Nf . The chiral ring of the dual theory

(S,M,B, B̃) is related to that of the direct theory (S,M,B, B̃) by [1]

S = −S, M = µM, B = iµ−1ΛNf−3B, B̃ = iµ−1ΛNf−3B̃, (4.3)

where µ is a matching scale defined by

Λ̃6−Nf = µNf Λ6−2Nf , (4.4)

with Λ and Λ̃ being the dynamical scales of the direct and dual theories, respectively.

The gauge-invariant form of the classical F -term equations are

N = BM = MB̃ = 0, (4.5)

where we are using a matrix notation for the fields. The D-term equations give

B ∧ N = N ∧ B̃ = B ∧ B = B̃ ∧ B̃ = B ⊗ B̃ − N ∧N = 0, (4.6)

which are the same as the constraints (2.2) of SU(2) superQCD discussed in section 2 with

the substitution M → N . The space of solutions to the classical constraints (4.5–4.6) has

two branches: either N = B = B̃ = 0 and rank(M) > Nc, or, up to flavor rotations,

N = 0, M =




m

 , B =


 b

−b


 , B̃ =


 b̃

−b̃


 ,

(4.7)

where m is an Nc × Nc matrix and b̃b = 0.

This classical moduli space is clearly not the same as the moduli space (3.2–3.3) of the

direct SU(Nc) theory. However, the dual theory classical constraints (4.5–4.7) are expected

to be modified quantum mechanically by strong coupling effects. Because even though the

dual theory is free at the origin of moduli space, arbitrarily small vevs for M destabilize the

free fixed point by giving masses to the dual quarks through the superpotential coupling

(4.1), so the theory flows to strong coupling for large enough rank of M. Strong coupling

effects are argued in [6] to generate the constraints (3.2) of the direct theory.

In particular, the branch of (4.5–4.7) with rank(M) > Nc is lifted, and the b̃b = 0

constraint on the other branch is deformed to b̃b = det(m). As an example—which will be
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useful later—of how the classical constraints are modified by strong coupling effects, note

that if the singlet vev M is given a generic value ( e.g., by constraining it with a Lagrange

multiplier term as we will do below) with B = B̃ = 0, the superpotential (4.1) gives mass

to all the dual quarks. The dual theory thus flows to SU(2) superYang-Mills in the IR with

glueball vev S = (Λ̃6−Nf detM)1/2 generated by a Veneziano-Yankielowicz superpotential

Weff,VY = 2S
(
1 − ln

[
SΛ̃(Nf−6)/2/

√
detM

])
, (4.8)

where Λ̃ is the strong-coupling scale of the dual theory. The scale of the glueball appearing

this superpotential is determined by one loop matching Λ̃6
YM = Λ̃6−Nf detM. Integrating

S out of (4.8) then generates an effective superpotential for the singlet field given by

2Λ̃(6−Nf )/2
√

detM, thus lifting the rank(M) = Nf region of the classical moduli space.

4.1 Derivation of Weff

We now wish to find an exact effective superpotential for the dual theory which reproduces

the strong quantum effects described in the last two paragraphs. As in previous sections

we start with a tree level superpotential

Wtree = N̂ i
jM̂j

i + mi
j(M̂j

i −Mj
i ) + bij(B̂ij − Bij) + b̃ij(

ˆ̃Bij − B̃ij), (4.9)

where

mi
j = −∂Weff

∂Mj
i

, bij = −1

2

∂Weff

∂Bij
, b̃ij = −1

2

∂Weff

∂B̃ij
, (4.10)

are the by-now familiar Lagrange multipliers. We have only specified the vevs of M̂, B̂,

and ˆ̃B, because they completely parametrize the moduli space.

Using the GKA equations (2.4) in precisely the same way as before, we find a set of

equations similar to those, (2.7–2.9), found in section 2,

MN = S + 2bB, NM = S + 2B̃b, B̃MT = −2N b, MTB = −2b̃N , (4.11)

together with the equation coming from the variation of the singlet field M:

N = −m. (4.12)

Eliminating N by plugging (4.12) into (4.11) gives a set of partial differential equations for

the effective superpotential

−Mm = S + 2bB, −mM = S + 2B̃b̃, B̃MT = 2mb, MTB = 2b̃m. (4.13)

To solve for the effective superpotential we multiply the third equation in (4.13) from

the right by B and from the left by M to obtain MB̃MTB = 2MmbB = −2(SI + 2bB)bB,

where in the second equality we used the first equation in (4.13) to eliminate Mm. Solving

this quadratic equation for bB, we find

bB =
1

4

(
−S +

√
S2 − 4MB̃MTB

)
, Mm =

1

2

(
−S −

√
S2 − 4MB̃MTB

)
,

B̃b̃ =
1

4

(
−S +

√
S2 − 4B̃MTBM

)
, mM =

1

2

(
−S−

√
S2−4B̃MTBM

)
, (4.14)

where the second line comes from solving similar quadratic equations for B̃b̃ and mM.

– 14 –



J
H
E
P
0
2
(
2
0
0
6
)
0
7
1

The matrix square roots in the above expressions need some explanation. In order to

make sense of them, consider a region in the configuration space where the magnitude of

each element in the matrix MB̃MTB is much smaller than S2. We can then expand the

the square root as a power series,
√

S2 − 4MB̃MTB = S
√

I(I−2S−2MB̃MTB+ · · ·), and

by analytic continuation we extend the result to include all points on the parameter space.

However, for this to be a definition of the square root, we still need to determine
√

I. In

general
√

I = 2P − I where P can be any projection matrix (P 2 = P ). Which P should

we use? The following argument shows that we have to take
√

I = ±I. As we saw in the

discussion surrounding (4.8), we expect to generate a non-zero S at points in the parameter

space where M 6= 0 but B = B̃ = 0, so this is a suitable region to evaluate the square

roots. At such points (4.13) implies that mM = Mm = −S and B̃MT = MTB = 0. But

this is only consistent with (4.14) if
√
S2I = SI implying that

√
I = ±I.

It is straightforward to integrate (4.14) for the effective superpotential to get

Weff =
S
4

ln det

(√
S2 − 4MB̃MTB − S√
S2 − 4MB̃MTB + S

)
− S

4
ln det(Λ̃−6MB̃MTB) + S ln det(Λ̃−1M)

+
1

2
tr

√
S2 − 4MB̃MTB +

1

2
(4 − Nf )S

[
α − ln(S/Λ̃3)

]
. (4.15)

We used the U(1)R symmetry to fix the S dependence up to an undetermined integration

constant α. Evaluating Weff at B = B̃ = 0 gives, after a somewhat delicate cancellation,

Weff(B = B̃ = 0) = 2S
(

α + (1 − α)
Nf

4
− ln

[
SΛ̃(Nf /2)−3/

√
detM

])
. (4.16)

Comparing to the answer (4.8) expected from the strong coupling analysis, fixes α = 1.

Note that this limiting form (4.16) is already a check that the effective superpotential (4.15)

is consistent with the quantum modified constraints. In particular the S ln detM term

in (4.16) serves to lift the whole rankM = Nf region of the classical moduli space (4.5–

4.7), in accordance with the expected quantum constraints (3.2–3.3).

So, our final result for the effective superpotential for the Seiberg dual theory is

Weff =
S
4

ln det

(√
S2 − 4MB̃MTB − S√
S2 − 4MB̃MTB + S

)
− S

4
ln det

(
MB̃MTB

)
+ S ln detM

+
1

2
tr

√
S2 − 4MB̃MTB + (4 − Nf )

S
2

(1 − lnS) + (6 − Nf )S ln Λ̃. (4.17)

Using the chiral ring mappings (4.3), this can be expressed in terms of the fields of the

direct theory. Note that since S = −S, the definition of the branch of the square root

made above,
√
S2I = SI, now becomes

√
S2I = −SI. We make this minus sign explicit by

changing the signs of all square roots and keeping the convention
√

S2I = +SI. We then

find

weff =
s

4
ln

[
det

(√
s2 + 4x + s√
s2 + 4x − s

)
detx

det4 M

]
− 1

2
tr

√
s2 + 4x + (Nf − 4)

s

2
[1 − ln s] , (4.18)
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where we have defined the shorthands

weff := ΛNf−3Weff , s := ΛNf−3S, x := MB̃MT B, (4.19)

to avoid having to write factors of Λ. This is the effective superpotential for SU(Nc)

superQCD with Nf = Nc + 2.

4.2 Integrating out the glueball field

Away from the origin of moduli space, the glueball s is expected to be massive. Solving its

equation of motion, ∂weff/∂s = 0, gives s = s∗(M,B, B̃) where s∗ is defined implicitly by

s
2(Nf−4)
∗ = det

(√
s2
∗ + 4x + s∗√

s2
∗ + 4x − s∗

)
detx

det4 M
. (4.20)

Substituting this in weff gives the effective superpotential as a function of meson and

baryons only,

weff |s∗ = −2s∗

[
1 +

1

4
tr

(√
1 + 4

x

s2
∗

− 1

)]
. (4.21)

The relation (4.20) gives s∗ as a complicated function of M , B, and B̃, which makes it

difficult to deduce the equations of motion for these fields from weff .

Before solving (4.20) for s∗, we can extract some of the constraints that M , B, and

B̃ must satisfy on the moduli space. Since weff is singular, as shown in [7] it must be

regularized in order to extract its physical predictions. The idea behind the regularization

is to deform Weff by introducing some regularizing parameters µ, β, β̃ as follows

weff → wµ,β,β̃
eff = weff + µi

jM
j
i + βijBij + β̃ijB̃

ij. (4.22)

Generic small values of µ, β, and β̃, will fix M , B, and B̃ to some values which will be

shifted from the moduli space (the extrema of weff) by positive powers of the regularizing

parameters. Thus as µ, β, β̃ → 0, {M,B, B̃} will approach some point on the moduli space.

However, the specific point reached on the moduli space will depend on how the regularizing

parameters scale to zero: as different orders of limits of µ, β, β̃ → 0 are taken, the whole

moduli space will be scanned. (Note that some vanishing limits of the regularizers can also

send M , B, or B̃ to infinity; this is unavoidable since the moduli space itself stretches off

to infinity.)

This regularization procedure should be compared with the trick we used of introducing

Lagrange multipliers (4.9) to derive equations for weff from the GKA equations. With the

replacement of the Lagrange multipliers with the regularizing parameters, {m, b, b̃} →
{µ, β, β̃}, the identification of the Lagrange multipliers as derivatives of weff , (4.10), is now

interpreted as the regularized equations of motion. Thus, extremizing wµ,β,β̃
eff using (4.18)

gives

4βB = s −
√

s2 + 4x, 2Mµ = s +
√

s2 + 4x,

4B̃β̃ = s −
√

s2 + 4y, 2µM = s +
√

s2 + 4y, (4.23)
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where y := M−1xM . (4.23) is equivalent to (4.14), the original differential equations—with

the operator mappings (4.3)—we integrated to get weff in the first place. Then, reversing

the manipulations which led from (4.13) to (4.14) gives

Mµ = s − 2βB, µM = s − 2B̃β̃, B̃MT = −2µβ, MT B = −2β̃µ. (4.24)

These show that independent of how µ, β, β̃ → 0, we always end up with B̃MT = MT B =

0. This implies in particular that x = −4βµT β̃µ, and so also always vanishes with the

regularizing parameters. Also, if as µ, β, β̃ → 0 M , B, and B̃ remain finite, then s → 0 as

well.

This shows that the extrema of the superpotential (4.18) satisfy the constraints B̃MT =

MT B = s = 0, which are, indeed, part of the constraints (3.2) describing the Nf = Nc + 2

superQCD moduli space. The remaining constraints should also follow from the effective

superpotential. However, they are much harder to derive, as they require solving for s∗
in (4.20). Now the argument of the last paragraph shows that s∗ = 0, but, because of the

singular nature of the superpotential, it is incorrect to simply plug this value into (4.21)

to find weff . Instead, s∗ should be found for generic M , B, and B̃, and then the extrema

of the resulting effective superpotential can be analyzed by regularizing it, as above.

The equation (4.20) can be solved systematically for s∗ by assuming that (all the

eigenvalues of) ξ := x/s2
∗ ¿ 1 and expanding in powers of this parameter. The leading

order solution is s2
∗ = detM , which can be checked to be consistent with the assumption

that ||ξ|| ¿ 1. Change variables to

σ2 :=
s2
∗

det M
, X :=

x

detM
, (4.25)

so that (4.20) and (4.21) become

σ2(Nf−4) = detX det

(√
σ2 + 4X + σ√
σ2 + 4X − σ

)
= 2−2Nf det

(√
σ2 + 4X + σ

)2
, (4.26)

weff = −2
√

det M

[
σ +

1

4
tr

(√
σ2 + 4X − σ

)]
. (4.27)

Expand the right side of (4.26) in powers of X/σ and solve it consistently order-by-order

in a power series expansion σ2 = 1 + · · · to get

σ2 = 1 − tr X

2
− (tr X)2

8
+

3 tr(X2)

4
− (tr X)3

12
+

3 tr X tr(X2)

4
− 5 tr(X3)

3
(4.28)

− 9(tr X)4

128
+

27(tr X)2 tr(X2)

32
− 27 tr(X2)2

32
− 5 tr X tr(X3)

2
+

35 tr(X4)

8
+O(X5).

Plugging this into (4.27) gives

weff = −2
√

detM
[
1 +

tr X

4
+

(tr X)2

32
− tr(X2)

8
+

5(tr X)3

384
− 3 tr X tr(X2)

32
+

tr(X3)

6

+
49(tr X)4

6144
− 21(tr X)2 tr(X2)

256
+

9 tr(X2)2

128
+

5 tr X tr(X3)

24
− 5 tr(X4)

16

+ O(X5)
]
. (4.29)
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This is the answer, to order X4, for the effective superpotential for Nf = Nc +2 superQCD

found by integrating the Seiberg dual GKA equations and integrating out the glueball.

Alternatively, we can derive a differential equation satisfied by weff as a result of

integrating out s. Two of the equations of motion that we originally integrated to get the

superpotential (4.23) become, when written in terms of σ and X,

4βB =
√

detM
(
σ −

√
σ2 + 4X

)
,

2Mµ =
√

detM
(
σ +

√
σ2 + 4X

)
. (4.30)

On the other hand, upon integrating out s, we have seen that weff takes the form

weff =
√

det M f(X) (4.31)

for some function f . (This form just follows from the symmetries.) Two of the equations

of motion following from this form of weff are

4βB =
√

det M
(

4Xf ′
)
,

2Mµ =
√

det M
(
−4Xf ′ − f + 2 tr(Xf ′)

)
, (4.32)

where f ′ is the matrix derivative df/dX.

Equating and adding (4.30) and (4.32) gives

σ = −1

2
f + tr(Xf ′), (4.33)

while equating and multiplying (4.30) and (4.32) gives

1 = f ′
(
f − 2 tr(Xf ′) + 4Xf ′

)
. (4.34)

This is a nonlinear first order (matrix) differential equation for weff with the glueball

integrated out. We do not know how to integrate this equation in closed form when

rank(X) > 1. But it is straightforward to check that a series expansion of the solution

to (4.34) with boundary condition f(0) = −2 reproduces (4.29).

It may be clarifying to note that (4.34) has a one-parameter family of solutions. For

if f(X) is a solution, then so is

f(a)(X) := af(a−2X) (4.35)

for any a ∈ C
∗. By (4.33) this implies that σ(X) changes to aσ(a−2X); but it is easy to

check that the σ equation of motion (4.26) does not have this symmetry. The algebraic

equation (4.26) determining σ has more information than the differential equation (4.34),

and so picks out a single instance of the family of solutions (4.35), namely the one obeying

the boundary condition f(0) = −2. (For example, −2 tr(
√

2X) solves (4.34) but does not

satisfy (4.26), so is not a physical solution.)

– 18 –



J
H
E
P
0
2
(
2
0
0
6
)
0
7
1

4.3 Comparing to the direct result when Nf = 4

Is (4.29) the correct superpotential? A basic check is to see whether its extrema (computed

by appropriately regularizing, as explained above) reproduce the moduli space given by the

constraints (3.2). This seems a very difficult check to perform since we do not have a closed

analytic form for weff .

However, there is one case where we can carry out a non-trivial check. When Nf = 4,

Nc = 2, so in this case we should reproduce the superpotential (3.17) found in sections 2

and 3 for the SU(2) theory. Expanding (3.17) in powers of X, we find

ΛWeff,SU(2) = −2
√

det M
[
1+

tr X

4
+

(tr X)2

32
− tr(X2)

8
+

(tr X)3

384
− tr X tr(X2)

32
+

tr(X3)

12

+
(tr X)4

6144
− (tr X)2 tr(X2)

256
+

tr(X2)2

128
+

tr X tr(X3)

48
− tr(X4)

16

+ O(X5)
]
. (4.36)

Though it does not coincide with the expansion (4.29) starting at order X3, we must bear

in mind the identities (3.21) that traces of powers of X satisfy starting at cubic order. One

finds that the difference between (4.36) and (4.29) is proportional to these identities, and so

vanishes. Thus the effective superpotential found by integrating the dual GKA equations

matches the correct result at least to quartic order in X.
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